Additional Answers

19. 1. 21 = 22: ∠PQR ~ / SRQ (Given) 2. QR := QR (Refl. Prop.) 3. $\triangle PQR = \triangle SRO$ (ASA) 4. PR ≈ SQ (Corr. parts of $\approx A$ are \approx .) 20. 1. WZ 1. plane M (Given) 2. WZ I XZ; WZ I YZ (Def. of line 1 plane) 3. $m \angle WZX = 90$ = m Z WZY (Def. of 1 lines, rt. 2) 4. ZZXY = ZZYX (Given) 5. ZX = ZY (11 2 & of a Δ are \approx , then the sides opp. those & are 🖘:) 6. WZ ≃ WZ (Refl. Prop.) 7. $\triangle WZX \cong \triangle XZY$ (SAS) 8. WX = WY (Corr. parts of = A are =:)

Chapter Test

omplete.

I. If $\triangle LEG \cong \triangle ARM$, then $\overline{GL} \cong \underline{?}$ and $\triangle RMA \cong \underline{?}$.

- 2. In isosceles $\triangle ABC$, $m \angle A = 130$. The legs are sides ? and ? \overline{AB} , \overline{AC} $m \angle B = ?$ (numerical answer). 25
- 1. You want to prove $\triangle RST \cong \triangle XYZ$ by SAS. If you have $\overrightarrow{ST} \cong \overrightarrow{YZ}$ and $\angle T \cong \angle Z$, you must show that $\underline{?} \cong \underline{?}$. RT, XZ

Chapter 3

- 5. If $\triangle JKL$ is equilateral, then $m \angle K = \frac{?}{}$ (numerical answer). 60
- 6. A perpendicular segment from a vertex of a triangle to the line that contains the opposite side is called a(n) ? of the triangle. altitude
- 7. A point lies on the perpendicular bisector of a segment if and only if it is equidistant from -?... the endpoints of the segment
- 8. Use inductive reasoning to complete: 100, 99, 97, 94, 90, 85, -7, -79, 72

Can the triangles be proved congruent? If so, by which method, SSS, SAS, ASA, AAS, or HL?

9. Yes. SSS

\overline{AC} is the perpendicular bisector of \overline{BD} .

- 15. a. A is equidistant from $\frac{?}{}$ and $\frac{?}{}$. B. D. b. C is equidistant from $\frac{?}{}$ and $\frac{?}{}$. B. D.
- 16. Name two isosceles triangles. △ABD, △CBD
- 17. Name three pairs of congruent triangles. $\triangle AMB \approx \triangle AMD, \triangle CMB \approx \triangle CMD, \triangle ADC \approx \triangle ABC$
- 18. In $\triangle JKL$, $\overline{JL} \cong \overline{KL}$. If $m \angle J = x + y$, $m \angle K = 2x + 10$, and $m \angle L = x + 2y$, find the values of x and y. x = 20, y = 30
- 19. Given: $\angle 1 \cong \angle 2$; $\angle PQR \cong \angle SRQ$ Prove: $\overline{PR} \cong \overline{SQ}$

