AP ${ }^{\oplus}$ Calculus BC 2004 Scoring Guidelines

> The materials included in these files are intended for noncommercial use by AP teachers for course and exam preparation; permission for any other use must be sought from the Advanced Placement Program ${ }^{\oplus}$. Teachers may reproduce them, in whole or in part, in limited quantities, for face-to-face
> teaching purposes but may not mass distribute the materials, electronically or otherwise. This permission does not apply to any third-party copyrights contained herein. These materials and any copies made of them may not be resold, and the copyright notices
> must be retained as they appear here.

AP ${ }^{\circledR}$ CALCULUS BC 2004 SCORING GUIDELINES

Question 1

Traffic flow is defined as the rate at which cars pass through an intersection, measured in cars per minute. The traffic flow at a particular intersection is modeled by the function F defined by

$$
F(t)=82+4 \sin \left(\frac{t}{2}\right) \text { for } 0 \leq t \leq 30
$$

where $F(t)$ is measured in cars per minute and t is measured in minutes.
(a) To the nearest whole number, how many cars pass through the intersection over the 30 -minute period?
(b) Is the traffic flow increasing or decreasing at $t=7$? Give a reason for your answer.
(c) What is the average value of the traffic flow over the time interval $10 \leq t \leq 15$? Indicate units of measure.
(d) What is the average rate of change of the traffic flow over the time interval $10 \leq t \leq 15$? Indicate units of measure.
(a) $\int_{0}^{30} F(t) d t=2474$ cars
(b) $F^{\prime}(7)=-1.872$ or -1.873

Since $F^{\prime}(7)<0$, the traffic flow is decreasing at $t=7$.
(c) $\frac{1}{5} \int_{10}^{15} F(t) d t=81.899 \mathrm{cars} / \mathrm{min}$
(d) $\frac{F(15)-F(10)}{15-10}=1.517$ or $1.518 \mathrm{cars} / \mathrm{min}^{2}$

Units of cars / min in (c) and cars $/ \min ^{2}$ in (d)
$3:\left\{\begin{array}{l}1: \text { limits } \\ 1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
$1:$ answer with reason
$3:\left\{\begin{array}{l}1: \text { limits } \\ 1: \text { integrand } \\ 1: \text { answer }\end{array}\right.$

1 : answer

1 : units in (c) and (d)

AP ${ }^{\circledR}$ CALCULUS BC 2004 SCORING GUIDELINES

Question 2

Let f and g be the functions given by $f(x)=2 x(1-x)$ and $g(x)=3(x-1) \sqrt{x}$ for $0 \leq x \leq 1$. The graphs of f and g are shown in the figure above.
(a) Find the area of the shaded region enclosed by the graphs of f and g.
(b) Find the volume of the solid generated when the shaded region enclosed by the graphs of f and g is revolved about the horizontal line $y=2$.
(c) Let h be the function given by $h(x)=k x(1-x)$ for $0 \leq x \leq 1$. For each $k>0$, the region (not shown) enclosed by the graphs of h and g is the base of a solid with square cross sections perpendicular to the x-axis.

There is a value of k for which the volume of this solid is equal to 15 .
Write, but do not solve, an equation involving an integral expression that could be used to find the value of k.
(a) Area $=\int_{0}^{1}(f(x)-g(x)) d x$ $=\int_{0}^{1}(2 x(1-x)-3(x-1) \sqrt{x}) d x=1.133$
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
(b) Volume $=\pi \int_{0}^{1}\left((2-g(x))^{2}-(2-f(x))^{2}\right) d x$ $=\pi \int_{0}^{1}\left((2-3(x-1) \sqrt{x})^{2}-(2-2 x(1-x))^{2}\right) d x$ $=16.179$

1 : limits and constant
2 : integrand
$\langle-1\rangle$ each error
4: \quad Note: $0 / 2$ if integral not of form

$$
c \int_{a}^{b}\left(R^{2}(x)-r^{2}(x)\right) d x
$$

1: answer
$3:\left\{\begin{array}{l}2: \text { integrand } \\ 1: \text { answer }\end{array}\right.$
(c) Volume $=\int_{0}^{1}(h(x)-g(x))^{2} d x$

$$
\int_{0}^{1}(k x(1-x)-3(x-1) \sqrt{x})^{2} d x=15
$$

A ${ }^{\circledR}$ CALCULUS BC
 2004 SCORING GUIDELINES

Question 3

An object moving along a curve in the $x y$-plane has position $(x(t), y(t))$ at time $t \geq 0$ with $\frac{d x}{d t}=3+\cos \left(t^{2}\right)$. The derivative $\frac{d y}{d t}$ is not explicitly given. At time $t=2$, the object is at position $(1,8)$.
(a) Find the x-coordinate of the position of the object at time $t=4$.
(b) At time $t=2$, the value of $\frac{d y}{d t}$ is -7 . Write an equation for the line tangent to the curve at the point $(x(2), y(2))$.
(c) Find the speed of the object at time $t=2$.
(d) For $t \geq 3$, the line tangent to the curve at $(x(t), y(t))$ has a slope of $2 t+1$. Find the acceleration vector of the object at time $t=4$.
(a) $x(4)=x(2)+\int_{2}^{4}\left(3+\cos \left(t^{2}\right)\right) d t$ $=1+\int_{2}^{4}\left(3+\cos \left(t^{2}\right)\right) d t=7.132$ or 7.133
(b)

$$
\begin{aligned}
& \left.\frac{d y}{d x}\right|_{t=2}=\left.\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\right|_{t=2}=\frac{-7}{3+\cos 4}=-2.983 \\
& y-8=-2.983(x-1)
\end{aligned}
$$

(c) The speed of the object at time $t=2$ is $\sqrt{\left(x^{\prime}(2)\right)^{2}+\left(y^{\prime}(2)\right)^{2}}=7.382$ or 7.383 .
(d) $x^{\prime \prime}(4)=2.303$
$y^{\prime}(t)=\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}=(2 t+1)\left(3+\cos \left(t^{2}\right)\right)$
$y^{\prime \prime}(4)=24.813$ or 24.814
The acceleration vector at $t=4$ is
$\langle 2.303,24.813\rangle$ or $\langle 2.303,24.814\rangle$.
$3:\left\{\begin{array}{l}1: \int_{2}^{4}\left(3+\cos \left(t^{2}\right)\right) d t \\ 1: \text { handles initial condition } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { finds } \frac{d y}{d x} \\ 1: \text { equation }\end{array}\right.$

1 : answer
$3:\left\{\begin{array}{l}1: x^{\prime \prime}(4) \\ 1: \frac{d y}{d t} \\ 1: \text { answer }\end{array}\right.$

A ${ }^{\circledR}$ CALCULUS BC
 2004 SCORING GUIDELINES

Question 4

Consider the curve given by $x^{2}+4 y^{2}=7+3 x y$.
(a) Show that $\frac{d y}{d x}=\frac{3 y-2 x}{8 y-3 x}$.
(b) Show that there is a point P with x-coordinate 3 at which the line tangent to the curve at P is horizontal. Find the y-coordinate of P.
(c) Find the value of $\frac{d^{2} y}{d x^{2}}$ at the point P found in part (b). Does the curve have a local maximum, a local minimum, or neither at the point P ? Justify your answer.
(a) $2 x+8 y y^{\prime}=3 y+3 x y^{\prime}$
$(8 y-3 x) y^{\prime}=3 y-2 x$

$$
y^{\prime}=\frac{3 y-2 x}{8 y-3 x}
$$

(b) $\frac{3 y-2 x}{8 y-3 x}=0 ; 3 y-2 x=0$

When $x=3,3 y=6$

$$
y=2
$$

$3^{2}+4 \cdot 2^{2}=25$ and $7+3 \cdot 3 \cdot 2=25$
Therefore, $P=(3,2)$ is on the curve and the slope is 0 at this point.
(c) $\frac{d^{2} y}{d x^{2}}=\frac{(8 y-3 x)\left(3 y^{\prime}-2\right)-(3 y-2 x)\left(8 y^{\prime}-3\right)}{(8 y-3 x)^{2}}$

At $P=(3,2), \frac{d^{2} y}{d x^{2}}=\frac{(16-9)(-2)}{(16-9)^{2}}=-\frac{2}{7}$.
Since $y^{\prime}=0$ and $y^{\prime \prime}<0$ at P, the curve has a local maximum at P.
$2:\left\{\begin{array}{l}1: \text { implicit differentiation } \\ 1: \text { solves for } y^{\prime}\end{array}\right.$
$3:\left\{\begin{array}{l}1: \frac{d y}{d x}=0 \\ 1: \text { shows slope is } 0 \text { at }(3,2) \\ 1: \text { shows }(3,2) \text { lies on curve }\end{array}\right.$
$4:\left\{\begin{array}{l}2: \frac{d^{2} y}{d x^{2}} \\ 1: \text { value of } \frac{d^{2} y}{d x^{2}} \text { at }(3,2) \\ 1: \text { co }\end{array}\right.$
1: conclusion with justification

AP ${ }^{\circledR}$ CALCULUS BC 2004 SCORING GUIDELINES

Question 5

A population is modeled by a function P that satisfies the logistic differential equation

$$
\frac{d P}{d t}=\frac{P}{5}\left(1-\frac{P}{12}\right)
$$

(a) If $P(0)=3$, what is $\lim _{t \rightarrow \infty} P(t)$?

If $P(0)=20$, what is $\lim _{t \rightarrow \infty} P(t) ?$
(b) If $P(0)=3$, for what value of P is the population growing the fastest?
(c) A different population is modeled by a function Y that satisfies the separable differential equation

$$
\frac{d Y}{d t}=\frac{Y}{5}\left(1-\frac{t}{12}\right)
$$

Find $Y(t)$ if $Y(0)=3$.
(d) For the function Y found in part (c), what is $\lim _{t \rightarrow \infty} Y(t)$?
(a) For this logistic differential equation, the carrying capacity is 12 .

If $P(0)=3, \lim _{t \rightarrow \infty} P(t)=12$.
If $P(0)=20, \lim _{t \rightarrow \infty} P(t)=12$.
(b) The population is growing the fastest when P is half the carrying capacity. Therefore, P is growing the fastest when $P=6$.
(c) $\frac{1}{Y} d Y=\frac{1}{5}\left(1-\frac{t}{12}\right) d t=\left(\frac{1}{5}-\frac{t}{60}\right) d t$
$\ln |Y|=\frac{t}{5}-\frac{t^{2}}{120}+C$
$Y(t)=K e^{\frac{t}{5}-\frac{t^{2}}{120}}$
$K=3$
$Y(t)=3 e^{\frac{t}{5}-\frac{t^{2}}{120}}$
(d) $\lim _{t \rightarrow \infty} Y(t)=0$

$$
2:\left\{\begin{array}{l}
1: \text { answer } \\
1: \text { answer }
\end{array}\right.
$$

1: answer

5 :
1: separates variables
1: antiderivatives
1 : constant of integration
1 : uses initial condition
1: solves for Y
$0 / 1$ if Y is not exponential

Note: $\max 2 / 5$ [1-1-0-0-0] if no constant of integration
Note: $0 / 5$ if no separation of variables

1: answer
$0 / 1$ if Y is not exponential

A ${ }^{\circledR}$ CALCULUS BC
 2004 SCORING GUIDELINES

Question 6
Let f be the function given by $f(x)=\sin \left(5 x+\frac{\pi}{4}\right)$, and let $P(x)$ be the third-degree Taylor polynomial for f about $x=0$.
(a) Find $P(x)$.
(b) Find the coefficient of x^{22} in the Taylor series for f about $x=0$.
(c) Use the Lagrange error bound to show that $\left|f\left(\frac{1}{10}\right)-P\left(\frac{1}{10}\right)\right|<\frac{1}{100}$.
(d) Let G be the function given by $G(x)=\int_{0}^{x} f(t) d t$. Write the third-degree Taylor polynomial for G about $x=0$.
(a) $f(0)=\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$

$$
\begin{aligned}
& f^{\prime}(0)=5 \cos \left(\frac{\pi}{4}\right)=\frac{5 \sqrt{2}}{2} \\
& f^{\prime \prime}(0)=-25 \sin \left(\frac{\pi}{4}\right)=-\frac{25 \sqrt{2}}{2} \\
& f^{\prime \prime \prime}(0)=-125 \cos \left(\frac{\pi}{4}\right)=-\frac{125 \sqrt{2}}{2} \\
& P(x)=\frac{\sqrt{2}}{2}+\frac{5 \sqrt{2}}{2} x-\frac{25 \sqrt{2}}{2(2!)} x^{2}-\frac{125 \sqrt{2}}{2(3!)} x^{3}
\end{aligned}
$$

(b) $\frac{-5^{22} \sqrt{2}}{2(22!)}$
(c) $\left|f\left(\frac{1}{10}\right)-P\left(\frac{1}{10}\right)\right| \leq \max _{0 \leq c \leq \frac{1}{10}}\left|f^{(4)}(c)\right|\left(\frac{1}{4!}\right)\left(\frac{1}{10}\right)^{4}$

$$
\leq \frac{625}{4!}\left(\frac{1}{10}\right)^{4}=\frac{1}{384}<\frac{1}{100}
$$

(d) The third-degree Taylor polynomial for G about

$$
\begin{array}{r}
x=0 \text { is } \int_{0}^{x}\left(\frac{\sqrt{2}}{2}+\frac{5 \sqrt{2}}{2} t-\frac{25 \sqrt{2}}{4} t^{2}\right) d t \\
=\frac{\sqrt{2}}{2} x+\frac{5 \sqrt{2}}{4} x^{2}-\frac{25 \sqrt{2}}{12} x^{3}
\end{array}
$$

$4: P(x)$
$\langle-1\rangle$ each error or missing term deduct only once for $\sin \left(\frac{\pi}{4}\right)$ evaluation error
deduct only once for $\cos \left(\frac{\pi}{4}\right)$
evaluation error
$\langle-1\rangle$ max for all extra terms, $+\cdots$, misuse of equality
$2:\left\{\begin{array}{l}1: \text { magnitude } \\ 1: \text { sign }\end{array}\right.$

1 : error bound in an appropriate inequality

2 : third-degree Taylor polynomial for G about $x=0$
$\langle-1\rangle$ each incorrect or missing term
$\langle-1\rangle$ max for all extra terms, $+\cdots$, misuse of equality

